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1. Why are dynamic arrays needed in C++7?

Arrays are a widely used low-level abstraction for storing elements of a common type. C++ pro-
vides arrays as a built-in type. So why should one want to implement a generic array class? There
are basically the following reasons for doing this:

. C++ does not provide dynamic arrays. The size of an array must be known at compile time
and cannot be changed at runtime. This implies a practice of using fixed sized limits. In
many cases these "maximum” limits are no natural limit at all and lead to programs which
are very hard to be modified or extended. On the other hand using dynamic arrays in C is
error prone and boring.

. C++ does not support copying and assignment of arrays.

° Generic dynamic arrays are an important building block for the implementation of many
kinds of container classes, nearly every serious application will need it.

2. Proposal for a generic dynamic array class

Since the proposed class should be used as a low-level building block it only provides basic func-
tionality.

‘The name ”"DynArray” for this class is selected as ”array” is a built-in type of C++ and the alter-
native ”vector” may be expected to be a mathematical class (and would have different member
functions).

template <class T> class DynArray {

public:
// Constructors
DynArray(); // Array of size 0

DynArray(unsigned size); // Array of given size

// Destructor
“Dynarray(); // destructs elements and frees dynamic store
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// Copy and assign
DynArray(const DynArrayZ source);
const DynArray& operator=(const DynArray& source);

// Element access
T& operator(](unsigned index);
const T& operator[](unsigned index) const;

// Low level access to array elements

T* base(); // get address of first element
const T* base() const;

// Size
unsigned size() comst; // returns size of array
unsigned size(unsigned sz); // change size to sz

// Low level helper functions
void swap(DynArray& other); // swap contents };

3. Description of the public interface
3.1. Comnstructors

Declaration:
DynArray()

Synopsis:

This is the default constructor. It creates a DynArray of size null.
Result:

None

Exceptions:

None

Declaration:
DynArray(unsigned size)

Synopsis:

Creates an array of size ’size’. If size is null, same as DynArray() above. Otherwise enough
dynamic store for ’size’ elements will be allocated. It is guaranteed that the default con-
structor is called for each element.

Result:

None
Exceptions:
OutOfMemory

Declaration:
DynArray(const DynArray& source)
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3.2.

3.3.

3.4.

Synopsis:

This is the copy constructor. It creates a DynArray with the same size as the DynArray
"source” and initializes all elements of the new DynAray with a copy of the corresponding
element in DynArray source. (new[i] == source[i] for 0 <= i < source.size()).

Result:

None
Exceptions:
OutOfMemory

Destructor

Declaration:
“DynArray()

Synopsis:

Calls the destructor for each element (if there is one) and frees all dynamic memory used by
the array.

Result:
None
Exceptions:

None

Assignment

Declaration:
const DynArray& operator=(const DynArray& source)

Synopsis:

This operation guarantees to call the destructor for each element of the receiver. Then all
dynamic store used by the "this” DynArray is freed if necesssary, creates a DynArray with
the same size as the DynArray "source” and initializes all elements of the new DynAray with
a copy of the corresponding element in DynArray source. ((*this)[i] == sourceli] for 0 <= i
< source.size()).

If a DynArray is assigned to itself it just returns a reference to source.
Result:

Const reference to DynArray

Exceptions:
OutOfMemory

Indexing operators

Declaration:

T& operator[]l(unsigned index)
const T& operator(](unsigned index) conmst
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3.5.

Synopsis:

Returns reference to object at index ’index’ (index is zero based). No range checking will be
performed, so that the result will be undefined, if ’index >= size()’, this is because of the
implied overhead and that DynArray is thought to be a low level abstraction. If the imple-
mentor provides a debug version of its library an assert should check for this.

The const version will operate on constant arrays.
Result:

(Const) reference to element index of the DynArray.
Exceptions:

None

Miscellaneous

Declaration:

T* base()

const T* base() const;
Synopsis:

This operation is very problematic as a pointer to the internal representation is returned and
it assumes the internal representation to be a contiguous C++ array. By this pointer the
user can manipulate the internal array without using DynArrays member functions, this is
quite dangerous, because there are many situations the returned pointer will become invalid.
The pointer will become invalid in the following circumstances:

- The array is destructed
- The size of the array is changed
- The array is assigned to

Again there is a version for const arrays.

Returns a pointer to the first element of DynArray. Returns zero, if the size of the array is
null. Here we could use a conversion operator. By using a named member function, there
will be no implicit conversions and the user is responsible for using the pointer.

Result:

{Const) pointer to the base of the internal array.
Exceptions:

None

Declaration:

unsigned size() const
Synopsis:

Returns the size of the array.
Result:

Unsigned

Exceptions:
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None

Declaration:

unsigned size(unsigned new_size)
Synopsis:

Changes the size of the array to ‘new_size’. If 'new_size’ is smaller than the current size, the
destructors for the remaining elements must be called. If 'new_size’ is bigger than the current
size, new elements must be initialized by their default constructor. If there is not enough
memory for the new size the OutOfMemory exception will be thrown. The member function
returns ‘new_size’.

Result:
Unsigned
Exceptions:

OutOfMemory

Declaration:
void swap(DynArray& other);

Synopsis:

Swaps the contents of the receiver with the contents of ’other’ without moving or copying
elements. This is a useful low-level operation, which should be part of the standard, because
it cannot be efficiently implemented without access to the private part of the class.

Result:
None
Exceptions:
None
Notes
The element type T must be a basic type or should have the following characteristics:
. A default constructor must be provided.
. Copying and assignment must be possible.

4. Class PointerDynArray

Class DynArray<void*> should be part of the standard library. For efficiency reasons there could
exist a specific implementation of this class, that makes use of the fact, that there are no construc-
tors or destructors for pointers. DynArrays of pointers should be implemented by a generic sub-
class of DynArray<void*>. This subclass might look like this:

template <class T> class PointerDynArray : public DynArray<voids> {

public:
PointerDynArray()
{
// Creates array of size zero
}
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PointerDynArray(unsigned s)
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